Bibliografía
Aguilar, Á. A. (s.f.). Notas de microeconometría aplicada -
kernel. https://bookdown.org/viclzrz/notasmicro/kernel.html
Banks, J., Carson, J. S., Nelson, B. L., & Nicol, D. M. (2010).
Discrete-event system simulation (5th ed.). Prentice Hall.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P.
(2002). SMOTE: Synthetic minority over-sampling technique. Journal
of Artificial Intelligence Research, 16, 321–357. https://jair.org/index.php/jair/article/view/10302/24590
Economipedia. (2023). Diferencia entre estadística paramétrica y no
paramétrica. https://economipedia.com/definiciones/diferencia-entre-estadistica-parametrica-y-no-parametrica.html
Efron, B. (1979). Bootstrap methods: Another look at the jackknife.
The Annals of Statistics, 7(1), 1–26. https://doi.org/10.1214/aos/1176344552
Fernández Casal, R. (2023). Remuestreo: Técnicas de remuestreo y
métodos bootstrap con r. https://rubenfcasal.github.io/book_remuestreo/.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A.,
& Rubin, D. B. (2013). Bayesian data analysis (3rd ed.).
CRC Press.
Goffe, W. L., Ferrier, G. D., & Rogers, J. (1994). Global
optimization of statistical functions with simulated annealing.
Journal of Econometrics, 60(1-2), 65–99. https://doi.org/10.1016/0304-4076(94)90038-8
Grinstead, C. M., & Snell, J. L. (1997). Introduction to
probability. American Mathematical Society. https://math.dartmouth.edu/~prob/prob/prob.pdf
Guzmán, A. G., & Recuena, J. C. (s.f.). Algunas consideraciones
sobre la naturaleza de la técnica jackknife de estimación y las ventajas
e inconvenientes de su uso en diversos problemas de inferencia
estadística. Estadística Española. https://www.researchgate.net/publication/272788887_Algunas_consideraciones_sobre_la_naturaleza_de_la_tecnica_Jackknife_de_estimacion_y_las_ventajas_e_inconvenientes_de_su_uso_en_diversos_problemas_de_inferencia_estadistica
Hall, P. (1992). The bootstrap and edgeworth expansion.
Springer. https://doi.org/10.1007/978-1-4612-4384-7
Knuth, D. E. (1998). The art of computer programming, volume 2:
Seminumerical algorithms (3rd ed.). Addison–Wesley.
Lehmer, D. H. (1951). Mathematical methods in large-scale computing
units. 141–146.
Metropolis, N., & Ulam, S. (1949). The monte carlo method.
Journal of the American Statistical Association,
44(247), 335–341.
Neumann, J. von. (1951). Various techniques used in connection with
random digits. 12, 36–38.
Nyquist, H. (1928). Certain topics in telegraph transmission theory.
Transactions of the American Institute of Electrical Engineers,
47(2), 617–644. https://doi.org/10.1109/T-AIEE.1928.5055024
Ojeda, L. R. (2014). Construcción de kernels y funciones de densidad
de probabilidad. Escuela Superior Politécnica del Litoral (ESPOL).
https://www.dspace.espol.edu.ec/handle/123456789/25019
Politis, D. N., Romano, J. P., & Wolf, M. (1999).
Subsampling. Springer. https://doi.org/10.1007/978-1-4612-1554-7
Quenouille, M. H. (1949). Approximate tests of correlation in
time-series. Journal of the Royal Statistical Society. Series B
(Methodological), 11(1), 68–84.
Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a
density function. The Annals of Mathematical Statistics,
27(3), 832–837. https://doi.org/10.1214/aoms/1177728190
Ross, S. M. (2014). Introduction to probability models (11th
ed.). Academic Press.
Sarabia, J. M. (2003). Estadística actuarial: Teoría y
aplicaciones. Editorial Universidad de Cantabria.
Shannon, C. E. (1949). Communication in the presence of noise.
Proceedings of the IRE, 37(1), 10–21. https://doi.org/10.1109/JRPROC.1949.232969
Tukey, J. W. (1958). Bias and confidence in not quite large samples.
The Annals of Mathematical Statistics, 29(2), 614.
Wasserman, L. (2006). All of nonparametric statistics.
Springer. https://doi.org/10.1007/0-387-30623-2
Zhao, P., & Lai, L. (2020). Analysis of KNN density estimation.
arXiv Preprint arXiv:2010.00438. https://arxiv.org/abs/2010.00438